Libeskind, N. I., Hoffman, Y., Forero-Romero, J., Gottlober, S., Knebe, A., Steinmetz, M., Klypin, A., 2013, Monthly Notices of the Royal Astronomical Society
, 428, 3 , 2489 Published: January 2013
The alignment of dark matter (DM) haloes and the surrounding large-scale structure (LSS) is examined in the context of the cosmic web. Halo spin, shape and the orbital angular momentum of subhaloes are investigated relative to the LSS using the eigenvectors of the velocity shear tensor evaluated on a grid with a scale of 1 Mpc h-1, deep within the non-linear regime. Knots, filaments, sheets and voids are associated with regions that are collapsing along 3, 2, 1 or 0 principal directions simultaneously. Each halo is tagged with a web classification (i.e. knot halo, filament halo, etc.) according to the nature of the collapse at the halo position. The full distribution of shear eigenvalues is found to be substantially different from that tagged to haloes, indicating that the observed velocity shear is significantly biased. We find that larger mass haloes live in regions where the shear is more isotropic, namely the expansion or collapse is more spherical. A correlation is found between the halo shape and the eigenvectors of the shear tensor, with the longest (shortest) axis of the halo shape being aligned with the slowest (fastest) collapsing eigenvector. This correlation is web independent, suggesting that the velocity shear is a fundamental tracer of the halo alignment. A similar result is found for the alignment of halo spin with the cosmic web. It has been shown that high-mass haloes exhibit a spin flip with respect to the LSS: we find that the mass at which this spin flip occurs is web dependent and not universal as suggested previously. Although weaker than haloes, subhalo orbits too exhibit an alignment with the LSS, providing a possible insight into the highly correlated corotation of the Milky Way's satellite system. The present study suggests that the velocity shear tensor constitutes the natural framework for studying the directional properties of the non-linear LSS and those of haloes and galaxies.
Kitaura, F.-S., Erdoğdu, P., Nuza, S. E., Khalatyan, A., Angulo, R. E., Hoffman, Y., Gottlöber, S., 2012, Monthly Notices of the Royal Astronomical Society
, 427, 1 , L35 Published: November 2012
We present a cosmography analysis of the local Universe based on the recently released Two-Micron All-Sky Redshift Survey catalogue. Our method is based on a Bayesian Networks Machine Learning algorithm (the KIGEN-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second-order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling non-linear structures like filaments and voids in detail. Coherent redshift-space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields, we find that our method is extremely accurate up to k∼ 1 h Mpc-1 and still yields reliable results down to scales of about 3-4 h-1 Mpc. The motion of the Local Group we obtain within ∼80 h-1 Mpc (vLG = 522 ± 86 km s-1, lLG = 291° ± 16°, bLG = 34° ± 8°) is in good agreement with measurements derived from the cosmic microwave background and from direct observations of peculiar motions and is consistent with the predictions of ΛCDM.
Kitaura, F.-S., Angulo, R. E., Hoffman, Y., Gottlöber, S., 2012, Monthly Notices of the Royal Astronomical Society
, 425, 4 , 2422 Published: October 2012
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
Hoffman, Y., Metuki, O., Yepes, G., Gottlöber, S., Forero-Romero, J. E., Libeskind, N. I., Knebe, A., 2012, Monthly Notices of the Royal Astronomical Society
, 425, 3 , 2049 Published: September 2012
A new approach for the classification of the cosmic web is presented. In extension of the previous work of Hahn et al. and Forero-Romero et al., the new algorithm is based on the analysis of the velocity shear tensor rather than the gravitational tidal tensor. The procedure consists of the construction of the shear tensor at each (grid) point in space and the evaluation of its three eigenvectors. A given point is classified to be either a void, sheet, filament or a knot according to the number of eigenvalues above a certain threshold, 0, 1, 2 or 3, respectively. The threshold is treated as a free parameter that defines the web. The algorithm has been applied to a dark matter only simulation of a box of side length 64 h-1 Mpc and N = 10243 particles within the framework of the 5-year Wilkinson and Microwave Anisotropy Probe/Λ cold dark matter (ΛCDM) model. The resulting velocity-based cosmic web resolves structures down to ≲0.1 h-1 Mpc scales, as opposed to the ≈1 h-1 Mpc scale of the tidal-based web. The underdense regions are made of extended voids bisected by planar sheets, whose density is also below the mean. The overdense regions are vastly dominated by the linear filaments and knots. The resolution achieved by the velocity-based cosmic web provides a platform for studying the formation of haloes and galaxies within the framework of the cosmic web.
Di Cintio, A., Knebe, A., Libeskind, N. I., Hoffman, Y., Yepes, G., Gottlöber, S., 2012, Monthly Notices of the Royal Astronomical Society
, 423, 2 , 1883 Published: June 2012
We use the recently proposed scale-free mass estimators to determine the masses of the Milky Way (MW) and Andromeda (M31) galaxy in a dark matter only Constrained Local Universe Simulation. While these mass estimators work rather well for isolated spherical host systems, we examine here their applicability to a simulated binary system with a unique satellite population similar to the observed satellites of MW and M31. We confirm that the scale-free estimators work also very well in our simulated Local Group galaxies with the right number of satellites which follow the observed radial distribution. In the isotropic case and under the assumption that the satellites are tracking the total gravitating mass, the power-law index of the radial satellite distribution N(< r) ∝r3-γ is directly related to the host’s mass profile M(< r) ∝r1-α as α=γ- 2. The use of this relation for any given γ leads to highly accurate mass estimations which is a crucial point for observer, since they do not know a priori the mass profile of the MW and M31 haloes. We discuss possible bias in the mass estimators and conclude that the scale-free mass estimators can be satisfactorily applied to the real MW and M31 system.