Carlesi, E., Hoffman, Y., Sorce, J. G., Gottlöber, S., 2017, Monthly Notices of the Royal Astronomical Society
, 465, 4 , 4886
Published: March 2017
Abstract:
The mass of the Local Group (LG) is a crucial parameter for galaxy formation theories. However, its observational determination is challenging - its mass budget is dominated by dark matter that cannot be directly observed. To meet this end, the posterior distributions of the LG and its massive constituents have been constructed by means of constrained and random cosmological simulations. Two priors are assumed - the Λ cold dark matter model that is used to set up the simulations, and an LG model that encodes the observational knowledge of the LG and is used to select LG-like objects from the simulations. The constrained simulations are designed to reproduce the local cosmography as it is imprinted on to the Cosmicflows-2 data base of velocities. Several prescriptions are used to define the LG model, focusing in particular on different recent estimates of the tangential velocity of M31. It is found that (a) different vtan choices affect the peak mass values up to a factor of 2, and change mass ratios of MM31 to MMW by up to 20 per cent; (b) constrained simulations yield more sharply peaked posterior distributions compared with the random ones; (c) LG mass estimates are found to be smaller than those found using the timing argument; (d) preferred Milky Way masses lie in the range of (0.6-0.8) × 1012 M⊙; whereas (e) MM31 is found to vary between (1.0-2.0) × 1012 M⊙, with a strong dependence on the vtan values used.
See more at
NASA ADS
Ocvirk, P., Gillet, N., Shapiro, P. R., Aubert, D., Iliev, I. T., Teyssier, R., Yepes, G., Choi, J.-H., Sullivan, D., Knebe, A., Gottlöber, S., D'Aloisio, A., Park, H., Hoffman, Y., Stranex, T., 2016, Monthly Notices of the Royal Astronomical Society
, 463, 2 , 1462
Published: December 2016
doi:10.1093/mnras/stw2036
Abstract:
Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [∼ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ∼108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ∼2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.
See more at
NASA ADS